3.2432 \(\int \frac{(1-2 x)^{5/2}}{(2+3 x)^4 \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=122 \[ \frac{\sqrt{5 x+3} (1-2 x)^{5/2}}{3 (3 x+2)^3}+\frac{55 \sqrt{5 x+3} (1-2 x)^{3/2}}{12 (3 x+2)^2}+\frac{605 \sqrt{5 x+3} \sqrt{1-2 x}}{8 (3 x+2)}-\frac{6655 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{8 \sqrt{7}} \]

[Out]

((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(3*(2 + 3*x)^3) + (55*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(12*(2 + 3*x)^2) + (605*S
qrt[1 - 2*x]*Sqrt[3 + 5*x])/(8*(2 + 3*x)) - (6655*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(8*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.0301388, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {94, 93, 204} \[ \frac{\sqrt{5 x+3} (1-2 x)^{5/2}}{3 (3 x+2)^3}+\frac{55 \sqrt{5 x+3} (1-2 x)^{3/2}}{12 (3 x+2)^2}+\frac{605 \sqrt{5 x+3} \sqrt{1-2 x}}{8 (3 x+2)}-\frac{6655 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{8 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(5/2)/((2 + 3*x)^4*Sqrt[3 + 5*x]),x]

[Out]

((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(3*(2 + 3*x)^3) + (55*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(12*(2 + 3*x)^2) + (605*S
qrt[1 - 2*x]*Sqrt[3 + 5*x])/(8*(2 + 3*x)) - (6655*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(8*Sqrt[7])

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{5/2}}{(2+3 x)^4 \sqrt{3+5 x}} \, dx &=\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)^3}+\frac{55}{6} \int \frac{(1-2 x)^{3/2}}{(2+3 x)^3 \sqrt{3+5 x}} \, dx\\ &=\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)^3}+\frac{55 (1-2 x)^{3/2} \sqrt{3+5 x}}{12 (2+3 x)^2}+\frac{605}{8} \int \frac{\sqrt{1-2 x}}{(2+3 x)^2 \sqrt{3+5 x}} \, dx\\ &=\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)^3}+\frac{55 (1-2 x)^{3/2} \sqrt{3+5 x}}{12 (2+3 x)^2}+\frac{605 \sqrt{1-2 x} \sqrt{3+5 x}}{8 (2+3 x)}+\frac{6655}{16} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)^3}+\frac{55 (1-2 x)^{3/2} \sqrt{3+5 x}}{12 (2+3 x)^2}+\frac{605 \sqrt{1-2 x} \sqrt{3+5 x}}{8 (2+3 x)}+\frac{6655}{8} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )\\ &=\frac{(1-2 x)^{5/2} \sqrt{3+5 x}}{3 (2+3 x)^3}+\frac{55 (1-2 x)^{3/2} \sqrt{3+5 x}}{12 (2+3 x)^2}+\frac{605 \sqrt{1-2 x} \sqrt{3+5 x}}{8 (2+3 x)}-\frac{6655 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{8 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0460943, size = 74, normalized size = 0.61 \[ \frac{\sqrt{1-2 x} \sqrt{5 x+3} \left (15707 x^2+21638 x+7488\right )}{24 (3 x+2)^3}-\frac{6655 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{8 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(5/2)/((2 + 3*x)^4*Sqrt[3 + 5*x]),x]

[Out]

(Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(7488 + 21638*x + 15707*x^2))/(24*(2 + 3*x)^3) - (6655*ArcTan[Sqrt[1 - 2*x]/(Sqrt
[7]*Sqrt[3 + 5*x])])/(8*Sqrt[7])

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 202, normalized size = 1.7 \begin{align*}{\frac{1}{336\, \left ( 2+3\,x \right ) ^{3}}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( 539055\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{3}+1078110\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+718740\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+219898\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+159720\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +302932\,x\sqrt{-10\,{x}^{2}-x+3}+104832\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)/(2+3*x)^4/(3+5*x)^(1/2),x)

[Out]

1/336*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(539055*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^3+10781
10*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+718740*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)
/(-10*x^2-x+3)^(1/2))*x+219898*x^2*(-10*x^2-x+3)^(1/2)+159720*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x
+3)^(1/2))+302932*x*(-10*x^2-x+3)^(1/2)+104832*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)/(2+3*x)^3

________________________________________________________________________________________

Maxima [A]  time = 3.29769, size = 144, normalized size = 1.18 \begin{align*} \frac{6655}{112} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{49 \, \sqrt{-10 \, x^{2} - x + 3}}{27 \,{\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} + \frac{1043 \, \sqrt{-10 \, x^{2} - x + 3}}{108 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} + \frac{15707 \, \sqrt{-10 \, x^{2} - x + 3}}{216 \,{\left (3 \, x + 2\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^4/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

6655/112*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 49/27*sqrt(-10*x^2 - x + 3)/(27*x^3 + 54*
x^2 + 36*x + 8) + 1043/108*sqrt(-10*x^2 - x + 3)/(9*x^2 + 12*x + 4) + 15707/216*sqrt(-10*x^2 - x + 3)/(3*x + 2
)

________________________________________________________________________________________

Fricas [A]  time = 2.06134, size = 302, normalized size = 2.48 \begin{align*} -\frac{19965 \, \sqrt{7}{\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \,{\left (15707 \, x^{2} + 21638 \, x + 7488\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{336 \,{\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^4/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

-1/336*(19965*sqrt(7)*(27*x^3 + 54*x^2 + 36*x + 8)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1
)/(10*x^2 + x - 3)) - 14*(15707*x^2 + 21638*x + 7488)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(27*x^3 + 54*x^2 + 36*x +
8)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)/(2+3*x)**4/(3+5*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.86918, size = 429, normalized size = 3.52 \begin{align*} \frac{1331}{224} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} + \frac{1331 \,{\left (33 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{5} + 11200 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} + 1176000 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{12 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^4/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

1331/224*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^
2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 1331/12*(33*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqr
t(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^5 + 11200*sqrt(10)*((sqrt(2)*sqrt
(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 + 1176000*sqrt
(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)
)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)
))^2 + 280)^3